自己位置推定 物体検出

作業に支障を及ぼす障害物を検知します。 障害のサイズや検知感度、障害物までの距離 などは自由に設定できます。

360度全方位タイプのLiDARを用いたり 複数のLiDARを設置することで 死角をなくすことが可能です。

操作支援

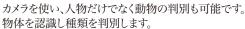
LiDARやカメラを使い

作業空間を認識し、操作対象物の位置や角度のずれを 検出してオペレーターの操作端末に表示します。

今まで作業者の感覚に 頼っていたことが 数値で示されます。

操作支援用端末

空間·環境認識


LiDARをバリアーとして用いることで、ある領域に侵入すると 警告を発するシステムの構築が可能です。 カメラによる認識は天候などの影響が受け易いですが、 LiDARは外乱を受け難く昼夜問わず有効です。

物体認識 対象追跡

対象となる移動体にロックオンして 継続して追跡することができます。 複数のカメラを跨いだ追跡も可能です。

LiDAR

LiDARは、赤外線レーザーを照射し 反射光の戻る時間を正確に測定することで 空間の各点までの距離を測ります。

カメラ

カメラはLiDARに比べて解像度が高く 物体の特徴を正確に判断するのに 有効です。

「目視の自動化」業務プロセス

- ▷お客様と一緒に問題を掘り下げ 自動化対象を見極める
- ▷ 現場を視察して実施環境を確認する
- ▷データ取得用システムを構築する 『目視の自動化』の"眼"をつくる)
- ▷ 実際に測定・記録を実施し、サンプル データや教師データを取得・蓄積する
- ▷ 取得データを解析して特徴を抽出し たり、教師データによる学習を実施する (『目視の自動化』の"脳"を作る)
- ▷プロトタイプを作成する
- ▷プロトタイプを用いて検証する
- ▷ 検証結果を解析し、必要があれば システムを改良する

プロトタイプ作成

課題・対象の定義

第 1 フェーズ

第275-7

第3フェーズ

試験運用

場合によっては3つのフェーズを繰り返すこともあります

株式会社 APC

URL http://www.oita-apc.co.jp 〒870-0853 大分県大分市羽屋194-4 TEL 097-573-6616 / FAX 097-573-6330

